CHEMISTRY (052) E

 Question Paper-II

 Question Paper-II}

Total Marks : 100

Time: 3 Hours

Instructions :

(1) There are FIVE questions in this question paper. All are compulsory.
(2) Give equations and diagrams wherever necessary.
(3) You may ask for \log-table, if requried.
(4) Atomic Weight (gm. Mole ${ }^{-1}$) :
$\mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{~Pb}=207, \mathrm{H}=1, \mathrm{~S}=32$
Q. 1. (A) Answer the following questions in short :
(1) For what the value of $\Delta \mathrm{G}$ of a reaction is the measure ?
(2) What is thermodynamically reversible process ?
(3) Give two names of different forms of silicon dioxide.
(4) $\mathrm{CH}_{3} \mathrm{NH}_{2}$ is stronger base than NH_{3}. Why ?
(5) When does the crystal structure of any compound become unstable?
(B) Solve ANY TWO of the following numericals :
(1) Calculate the weight of $\mathrm{CH}_{3} \mathrm{COOH}$ in 100 ml . of a solution of the acid which has a pH of 3.00 Ka of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.75×10^{-5}.
(2) Find out the change in free energy of the reaction.
$\mathrm{Zn}_{(\mathrm{S})}+2 \mathrm{Ag}^{+}{ }_{(\mathrm{aq})}=\mathrm{Zn}^{2+}+2 \mathrm{Ag}_{(\mathrm{S})}$.
which occurs in a standard cell at $25^{\circ} \mathrm{C}$. The standard potential of the cell is 0.54 volt.
(3) The ionization constant of methyl amine in aqueous solution is 5.0×10^{-4} at $25^{\circ} \mathrm{C}$. At this temperature what would be pH of a solution containing 6.20 g . of methyl amine in 500 ml . solution ?
(C) Answer ANY THREE of the following :
(1) Define the terms internal energy and enthalpy, obtain $\Delta H=q_{p}$ on the basis of first law of thermodynamic.
(2) Discuss the relationship betwen radius ratio of ions and crystal lattice structure.
(3) Explain Lewis acid base theory by suitable illustration.
(4) (a) Discuss the effect of temperature on ionic product of wter.
(b) Aqueous solution of sodium acetate is basic. Why ?
Q. 2. (A) Answer the following questions in short :
(1) On the basis of which principle can Nernst's equations be derived?
(2) State $(\mathrm{n}+l)$ rule.
(3) Why does a gaseous fuel burn much faster than a solid fuel?
(4) The potential of the cell depends on which factors ?
(5) Mention the characteristics of activated complex.
(B) Solve ANY TWO of the following numericals :
(1) The half life period of radio active Th^{233} is 1.39×10^{10} years. How many $\alpha-$ particles would be emitted per minute from $5.0 \mathrm{gm} . \mathrm{Th}^{232}$. Each Th^{232} atom emits one α-particle on decomposition.
(2) Calculate the equilibrium constants of the reaction.

$$
\begin{aligned}
& \mathrm{Ni}_{(\mathrm{S})}+\mathrm{Co}^{+2}{ }_{(\text {aq })}=\mathrm{Co}_{(\mathrm{S})}+\mathrm{Ni}^{2+}{ }_{(\text {aq) }} \\
& \mathrm{E}^{0} \mathrm{Ni}^{2+} / \mathrm{Ni}=-0.23 \text { volt; } \mathrm{E}^{0} \mathrm{Co}^{+2} / \mathrm{Co}=-0.28 \text { volt. }
\end{aligned}
$$

(3) Calculate the energy of a photon of a radiation having wavelength $6000 \mathrm{~A}^{0}$. Calculate the value of Einstein. Velocity of light $=3.0 \times 10^{10} \mathrm{~cm} \mathrm{sec}^{-1}$.
(C) Answer ANY THREE of the following :
(1) Derive equation of Arrhenius.
(2) Give the diagrammatic representation of molecular orbitals of F_{2} on the basis of Molecular Orbital Theory. Discuss the magnetic behaviour and bond order.
(3) (a) Explain the effect of temperature on the rates of reactions.
(b) Explain in brief : Half reaction time.
Q. 3. (A) Answer the following question in short.
(1) Give the chemical equation when benzene and methyl chloride reacts at $80^{\circ} \mathrm{C}$ in presence of anhydrous AlCl_{3}.
(2) Phenol cannot be neutralized by a weak bae like sodium bicarbonate. Why?
(3) State the name of indicator obtained from phenol.
(4) Give IUPAC name : (a) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{5}$ (b) Give structural formula of Dimethyl Ethylamine.
(5) State the limitations of Friedel - Craft reaction.
(B) Write chemical equations for ANY THREE of the following conversion.

Also give the condition of the reaction, names and structural formula of the main organic compound (Tahere should be only two step of each conversion)
(1) Ethanol from acetone.
(2) Glyoxal from Benzene.
(3) Toluene from phenol.
(4) m-chloro benzaldehyde from toluene
(C) Answer the following ANY THREE :
(1) Explain :
(a) Metallic structure, hardness and cohesive energy of alkali metals.
(b) Electronegativity and bond type of alkali metals.
(2) Discuss the chlorination of toluene.
(3) Explain in detail giving equation the chlorination and oxidation reactoin of methyl group of toluene.
(4) Explain the structure of benzene on the basis of molecular orbital theory.
Q. 4. (A) Answer the following :
(1) Give name and equation when dehydration of benzamide is carried out in presence of phosphorous pentoxide.
(2) How does hemoglobin supply oxygen to tissues ?
(3) Give the structural formulae of (a) 1-phenyl - 1- ethanol (b) Vegetable Oil
(4) Give preparation of Urea.
(5) How are sugars and stach obtained by body ?
(B) Write chemical equation for ANY THREE of the following conversions.

Also give the conditions of the reactions, names and structural formula of the main organic compound. (There should be only two step of each conversion)
(1) 2-methyl-2propanoic acid from acetone.
(2) Methylamine from acetyle chloride.
(3) p-Amino phenol from phenol.
(4) ABS from alkyl benzene.
(C) Answer the following ANY THREE :
(1) Discuss the acetylation \& alkylation of aniline.
(2) Write a note on nitrogen based fertilizer.
(3)
$\mathrm{A} \underset{\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}}{[\mathrm{O}]}$ B $\xrightarrow[\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}} \mathrm{C} \xrightarrow[\mathrm{D}]{\mathrm{NH}_{3}} \mathrm{CH}_{3}-\mathrm{CO}-\mathrm{NH}_{2}+\mathrm{D}$
Give names and structural formulae of $\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{D}$ for the above reaction.
(4) (i) Azo coupling Reaction (ii) Bromination of Aniline.
Q. 5. (A) Answer the following question in short :
(1) How many maximum covalent bonds can P , As and Sb form?
(2) Which oxidatin state of vanadium exhibits low stability ?
(3) How many co-ordination sites are present in bidentate and tridentate ligands?
(4) Give IUPAC (a) $\mathrm{Na}_{4}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$ (b) $\left.\mathrm{Fe}(\mathrm{CO})_{5}\right]$
(5) Give the formulas (a) Chloro pentammine cobalt (III) sulphate
(b) Potassium pentacyano carbonyl ferrate (II)
(B) Answer the following question ANY THREE :
(1) Explain the geometry of ML_{6} complexes giving examples.
(2) ZnSO_{4} is colourless while NiSO_{4} is coloured.
(3) State names and electron configuration of the element of zero group.
(C) Answer the following question in ANY THREE.
(1) The hybridization in complex $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is $\mathrm{d}^{2} \mathrm{sp}^{3}$ and not $\mathrm{sp}^{3} \mathrm{~d}^{2}$. Explain.
(2) Write a note on the allotropes of arsenic and antimony.
(3) Give electronic configuration of transition elements.
(4) Explain giving reasons :
(a) CuCl_{2} is paramagnetic while CuCl is diamagnetic.
(b) Ti^{+4} is more stable than Ti^{+3} but Ti^{+4} ion does not exist.
Q. 1. (A)
(1) $\Delta \mathrm{G}$ is a measure of energy available for doing useful work.
(2) If a change in state of a system occurs at an extremely slow rate, the differences between certain state functions of the systen and surrounding would be infinitesimaly small. Such process is known as thermodynamically reversible process.
(3) Cristobelite, quartz and Tridimite are the different forms of silicon dioxide.
(4) Because the $\underset{\mathrm{K}_{\mathrm{b}}}{\mathrm{NH}_{3}}<\underset{\mathrm{C}_{3} \mathrm{~K}_{2}}{ }$. So $\mathrm{CH}_{3} \mathrm{NH}_{2}$ is stronger base than NH_{3}.
(5) When the temparature is higher than the absolute zero, the crystal structure of any compound become unstable.
Q. 1. (B)
(1) $\mathrm{P}^{\mathrm{H}}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$3.0=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\therefore \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$antilog $\overline{3} .00$

$$
=1.0 \times 10^{-3} \mathrm{M} .
$$

But ionization of acetic acid is very little.

$$
\begin{aligned}
& \therefore \quad \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{l})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{\text { Kaco }}} \\
& 1.0 \times 10^{-3}=\sqrt{1.75 \times 10^{-5} \times \mathrm{Co}} \\
& 1.0 \times 10^{-6}=e_{1.75 \times 10^{-5} \times \mathrm{Co}}^{j} \\
& =1.75 \times 10^{-5} \times \mathrm{Co} \\
& \therefore \quad \mathrm{Co}=5.7 \times 10^{-2} \mathrm{M} \text {. } \\
& \mathrm{CH}_{3} \mathrm{COOH} \text { 's molarity }=\frac{1000 \times \mathrm{W}}{60 \times 100} \\
& \therefore 5.7 \times 10^{-2}=\frac{1000 \times W}{60 \times 100} \\
& \therefore \quad W=\frac{60 \times 100 \times 5.7 \times 10^{-2}}{1000} \\
& \therefore \quad \mathrm{~W}=0.3429 \mathrm{CH}_{3} \mathrm{COOH} \\
& \therefore \mathrm{CH}_{3} \mathrm{COOH}=0.342 \text { gram. }
\end{aligned}
$$

(2) $\mathrm{Zn}_{(\mathrm{S})}+\mathrm{Ag}^{+}{ }_{(\mathrm{g})} \rightleftharpoons \mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Ag}_{(\mathrm{S})}$

$$
\begin{align*}
\Delta \mathrm{E}^{0} & =\mathrm{E}^{0} \mathrm{ox}(\text { Anode })-\mathrm{E}^{0} \mathrm{ox}(\text { Cathode }) \\
& =0.76-(-0.80) \tag{1}
\end{align*}
$$

$\Delta \mathrm{E}^{0}=1.56$ volt
Now, at equilibrium, $\Delta \mathrm{E}=0.00 \mathrm{~V}$ and $\mathrm{n}=2$

$$
\begin{align*}
& \Delta \mathrm{E}=\Delta \mathrm{E}^{0}-\frac{0.0592}{\mathrm{n}} \times \log \mathrm{K}_{\mathrm{c}} \frac{\left[2 \mathrm{n}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}} \\
& 0.00=1.56-\frac{0.0192}{2} \times \log \mathrm{K}_{\mathrm{c}} \\
& \therefore \frac{1.56}{.0296}=\log \mathrm{K}_{\mathrm{c}} \tag{1}\\
& \therefore \log \mathrm{~K}_{\mathrm{c}}=52.70 \\
& \mathrm{~K}_{\mathrm{c}}=\text { Antilog } 52.70 \\
& \mathrm{~K}_{\mathrm{c}}=5.012 \times 10^{52} \tag{1}
\end{align*}
$$

(3) Mol. weight of $\mathrm{CH}_{3} \mathrm{NH}_{2}=(1)(12)+5(1)+1(14)=31 \mathrm{~g} / \mathrm{mol}$.
$\frac{\mathrm{g}}{\text { liter }}$ of $\mathrm{CH}_{3} \mathrm{NH}_{2}=\frac{6.2 \mathrm{~g}}{\frac{500}{100} \text { liter }}=12.4 \frac{\mathrm{~g}}{\text { liter }}$
\therefore Conc. of $\mathrm{CH}_{3} \mathrm{NH}=\frac{12.4 \mathrm{~g} / \text { liter }}{31 \mathrm{~g} / \mathrm{mole}}=0.4 \frac{\text { mole }}{\text { liter }}$
As $\mathrm{CH}_{3} \mathrm{NH}_{2}$ is a weak base,
$\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{b}} \times \mathrm{Co}}$
$=\sqrt{5 \times 10^{-4} \times 0.4}$
$=1.41 \times 10^{-2} \mathrm{M}$.
$\mathrm{P}^{0 \mathrm{H}}=-\log \left[\mathrm{OH}^{-}\right]$
$=-\log \left(1.41 \times 10^{-2}\right)$
$=-\log \left(1.41 \times 10^{-2}\right)$
$=-\log 1.41+2$
$=2-0.1492$
$=1.85$
$\therefore \mathrm{P}^{\mathrm{H}}=14-1.85$
$=12.15$
Q. 1. (C)
(1) Usually chemical reactions carried out in open containers occur at constant external pressure. A new state function called enthalpy is defined for the internal energy change taking place in such process.

Definition : "The sum of the internal energy (E) of the system and the work energy due to the product of pressure (P) and volume (V) of the system is known as enthalpy (H)."

$$
\mathrm{H}=\mathrm{E}+\mathrm{PV}
$$

If the state of a system changes the enthalpy change $(\Delta \mathrm{H})$ is expressed by,
$\Delta \mathrm{H}=\Delta \mathrm{E}+\Delta(\mathrm{PV})$

$$
=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{~V}+\mathrm{V} \Delta \mathrm{P} .
$$

Here, as the reaction occurs at constant external pressure, $\Delta \mathrm{P}=0$.
$\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{V}$
Now, according to the first law of thermodynamics $\Delta=\mathrm{q}=\mathrm{w}$
But, the work done by the system due to the change in volume at constant external pressure is $(\mathrm{w})=-\mathrm{P} \Delta \mathrm{V}$.
$\Delta \mathrm{E}=\mathrm{q}-\mathrm{p} \Delta \mathrm{v}$
$\therefore \quad \Delta \mathrm{H}=\mathrm{q}-\mathrm{p} \Delta \mathrm{v}+\mathrm{p} \Delta \mathrm{v}$
$\therefore \quad \Delta \mathrm{H}=\mathrm{qp}$.
So "The change in enthalpy of a system in which reaction occurs at constant temperature and pressure, the volume of the system changes."
(2)
(i) In tetrahedral structure, three spheres of identical size are in mutual contact in the same plane.

\rightarrow In the tetrahedral void between these sphere is between these small spere of cation. This sphere is sufficiently small so as to be in contact with the spheres.
$\rightarrow \quad$ Lt P, Q and R be the centers of spheres of the anions and S that of the sphere of the cation. I is the contact point between the spheres with centers pond Cr. Now, as shown in figure.
$\rightarrow \Delta \mathrm{STQ}$ is a right angled triangle in which $\angle \mathrm{STQ}=90^{\circ}$ and $\angle \mathrm{TQS}=30^{\circ}$. The side $\mathrm{QS}=\mathrm{r}_{+}+\mathrm{r}_{-}$and $\mathrm{QT}=\mathrm{r}_{-}$Now in $\Delta \mathrm{STQ}$

$$
\begin{aligned}
\cos 30^{\circ} & =\frac{\mathrm{QT}}{\mathrm{QS}} \\
\therefore \mathrm{QS} \cos 30^{0} & =\mathrm{QT} \\
\therefore\left(\mathrm{r}_{-}+\mathrm{r}_{+}\right) \frac{\sqrt{3}}{2} & =\mathrm{r}_{-} \\
\therefore\left(\mathrm{r}_{-}+\mathrm{r}_{+}\right) \frac{\sqrt{3}}{2} & =\mathrm{r}_{-} \\
\therefore \quad \frac{\sqrt{3}}{2} \mathrm{r}_{+} & =\mathrm{r}_{-}-\frac{\sqrt{3}}{2} \mathrm{r}_{-} \\
\therefore \quad \mathrm{r}_{+} & =\frac{2}{\sqrt{3}} \mathrm{r}_{-}-\mathrm{r}_{-} \\
\therefore \quad \mathrm{r}_{+} & =\mathrm{r}_{-} \boldsymbol{F}_{\sqrt{3}}^{2}-1 \frac{1}{-} \\
\therefore \quad \frac{\mathrm{r}_{+}}{\mathrm{r}_{-}} & =0.155
\end{aligned}
$$

(ii) Radius ratio in octahedral structure :

In the octahedral arrangement arround each cation there are four anions in the same plane. Moreover there is one anion above and one below.

The figure shows the cation is surrounded by four anions in the same plane in which the raii of cation and anion are r_{+}and r_{-}respectively.
$\mathrm{AC}=2 \mathrm{r}_{-}+2 \mathrm{r}_{+}$
$\mathrm{BC}=2 \mathrm{r}$
Now in $\triangle \mathrm{ABC}$

$$
\begin{aligned}
\cos 45^{0} & =\frac{\mathrm{BC}}{\mathrm{AC}} \\
\therefore \quad \mathrm{AC} \cos 45^{0} & =\mathrm{BC} \\
\therefore \quad\left(2 \mathrm{r}_{-}+2 \mathrm{r}_{+}\right) 1 / \sqrt{2} & =2 \mathrm{r}_{-} \\
2 \mathrm{r}_{+}+2 \mathrm{r}_{-} & =\sqrt{2} \cdot 2 \mathrm{r}_{-} \\
\therefore\left(\mathrm{r}_{+}+\mathrm{r}_{-}\right) & =\sqrt{2} \cdot \mathrm{r}_{-} \\
\therefore \quad \mathrm{r}_{+} & =\mathrm{r}_{-}(\sqrt{2}-1) \\
\therefore \quad \frac{\mathrm{r}_{+}}{\mathrm{r}_{-}} & =\sqrt{2}-1 \\
\therefore \quad \frac{\mathrm{r}_{+}}{\mathrm{r}_{-}} & =0.414 .
\end{aligned}
$$

(3) In 1923 a scientist named "Lewis" proposed acid- base theory on the basis of electron configuration, in which the idea of proton-transfer was abandoned.

Acid : A compound which accepts an electron pair during reactions is known as an acids.

Base : A compound which donates an electorn pair during reactions is known as a base.
$\rightarrow \mathrm{BF}_{3}+: \mathrm{F}^{-} \rightleftharpoons \mathrm{BF}_{4}^{-}$
In above reactions F^{-}from bonds with BF_{3} by using their non-bonding electron pair.
\rightarrow When a salt is dissolved in water the ions formed in solution becomes hydrated. This process of hydration is an accid base reaction.
(i) $\mathrm{NaCl}_{(\mathrm{S})} \rightarrow \mathrm{Na}^{+}{ }_{(\text {aq })}+\mathrm{Cl}^{-}{ }_{(\text {aq })}$
(ii) $\mathrm{Cl}^{-}+$water $\rightarrow\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}$
(iii) $\mathrm{Cl}^{-}+$water $\rightarrow\left[\mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{-}$

In this hydration process, Na^{+}acts ass an acid and Cl^{-}as a base.
\rightarrow Negative ions and neutral molecule acting as ligands in the formation of complex salts are Lewis bases and metal-ions bonding t_{0} ligands are Lewis acids.
(4) (a) The effect of temperature on ionic product of water.
\Rightarrow The value of ionic product of water K_{w} at $25^{0} \mathrm{C}$ is $1 \times 10^{-4} \mathrm{M}$.
\Rightarrow The process of formation of ions in small concentration by the dissociation of water is called self ionization of water.
\Rightarrow This process is an endtothermic process.

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

\Rightarrow Now, if the temperature is increased then according to Le-chatelier's principle the rate of forward reaction increases.
\Rightarrow Hence ionization of water is increases.
\Rightarrow As a result the concentration of H^{+}and OH^{-}ions increases.
\Rightarrow Thus the value of $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$increases with the rise in temperature, K_{w} of water increases with increase in temperature.
(b) Aqueous solution of sodium acetate is basic.
\Rightarrow Sodium Acetate $\left[\mathrm{CH}_{3} \mathrm{COONa}\right.$] is a salt formed from a weak acid $\mathrm{CH}_{3} \mathrm{COOH}$ and strong base NaOH .
\Rightarrow When it is dissolved in water it ionized completely.

$$
\mathrm{CH}_{3} \mathrm{COONa} \rightarrow \mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}+\mathrm{Na}^{+}{ }_{(\mathrm{aq})}
$$

\Rightarrow More over their exists following equilibrium in water.

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}
$$

$\Rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}$produced from $\mathrm{CH}_{3} \mathrm{COONa}$ salt combine with H^{+}ions produced by self-ionization of water and form uniemised weak acid $\mathrm{CH}_{3} \mathrm{COOH}$.
\Rightarrow Due to this equilibrium of water get disturbed.
\Rightarrow As a result the equilibrium of water shift in the formward direction and produces more H^{+}and OH^{-}ions.
\Rightarrow However H^{+}ions are removed by $\mathrm{CH}_{3} \mathrm{COO}^{-}$ions, hence the concentration of H^{+}ions decreases.
\Rightarrow Thus the concentration of OH^{-}ions exceeds the concentration of H^{+} ions.
\Rightarrow So the solution becomes basic.
\Rightarrow The overall reaction is as follows.

$$
\mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}
$$

Q. 2. (A)
(1) Nernst's equation can be derived on the basis of Thermodynamics.
(2) $(\mathrm{n}+\mathrm{l})$ rule :
\Rightarrow The order of enrgies of orbitals of different energy level is determined by the sum of n and 1 quantum numbers of orbitals.
\Rightarrow An orbital having a higher value of $(n+1)$ has higher energy.
(3) Gaseous fuels have greater surface area than a solid fuel.
(4) The potential of cell depends on the following factors.
(i) Temperature of the cell.
(ii) Concentration of solution in the cell.
(ii) Nature of electrodes.
(5) Activated complex having very short life and the maximum potential energy.

Q. 2. (B)

(1) * Calculation of K

$$
\begin{aligned}
\mathrm{t}_{1 / 2} & =1.39 \times 10^{10} \text { years } \\
& =1.39 \times 10^{10} \times 365 \times 24 \times 60 \mathrm{mins}
\end{aligned}
$$

$K=\frac{0.693}{t_{1 / 2}}$
$=\frac{0.693}{1.39 \times 10^{10} \times 365 \times 24 \times 60}$
$K=9.484 \times 10^{-17} \mathrm{~min}^{-1}$
for K

$$
\begin{aligned}
& \log 0.693=\overline{1}-8407 \\
& \log 1.39=0.1430 \\
& 10 \log 10=10.0000 \\
&+\log 365=2.5623 \\
&+\log 60=1.7782 \\
& \hline 15.8637^{-}
\end{aligned}
$$

$$
\begin{aligned}
& \text { * Calculation of } \mathrm{N} \mathbf{W}=\mathbf{5 . 0} \text { gms. } \\
& \mathrm{N}=\frac{6.023 \times 10^{23} \times \mathrm{W}}{\mathrm{M} \cdot \omega \mathrm{t} \text { of } \mathrm{Th}} \\
& =\frac{6.023 \times 10^{23} \times 5.0}{232} \\
& \mathrm{~N}=6.49 \times 10^{22} \mathrm{Th}^{232} \text { atoms. } \\
& -\frac{\mathrm{dN}}{\mathrm{dt}}=\mathrm{K} . \mathrm{N} \\
& =9.484 \times 10^{-17} \times 6.49 \times 10^{22} \\
& =61.55 \times 10^{5} \\
& \overline{1} .8407 \\
& \text { - } 15.8607 \\
& \overline{17.9770} \\
& \text { Antilog of } \overline{17} .9770 \\
& =9.484 \times 10^{-17} \mathrm{mnt}^{-1} \\
& \text { for } \mathbf{N} \\
& \log 6.023+23 \log 10+\log 5.0- \\
& \log 232 \\
& =0.7798+23 \\
& +0.6989-2.3655 \\
& \propto 25.1776 \\
& \text { - } 2.3655 \\
& 22.8121 \\
& \text { Antilog } 6.4889 \times 10^{22} \\
& -\frac{\mathrm{dN}}{\mathrm{dt}}=6.155 \times 10^{6} \alpha \text {-particles } / \mathrm{min} \text {. Ans. }
\end{aligned}
$$

Now

(2) Reactions for the cell :

Anode : $\mathrm{Ni}_{(\mathrm{S})} \rightarrow \mathrm{Ni}^{2+}{ }_{(\text {aq })}+2 \mathrm{e}^{-}$
Cathode : $\mathrm{Co}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}_{(\mathrm{s})}$
$\mathrm{Ni}_{(\mathrm{S})}+\mathrm{Co}_{(\mathrm{aq})}^{2+} \rightarrow \mathrm{Ni}_{(\mathrm{aq})}^{2+}+\mathrm{Co}_{(\mathrm{S})}$

$$
\mathrm{n}=2
$$

Cell potential $\Delta \mathbf{E}^{\mathbf{0}}$

$$
\begin{aligned}
\Delta \mathrm{E}^{0} & =\mathrm{E}_{\mathrm{Ni} / \mathrm{Ni}}^{2+}-\mathrm{E}_{\mathrm{Co} / \mathrm{Co}}^{0}{ }^{+2} \\
& =0.23-0.28 \\
\Delta \mathrm{E}^{0} & =-0.05 \text { volt }
\end{aligned}
$$

Calculation of $\mathbf{K}_{\mathbf{c}}$:

According to Nernst Equation :

$$
\Delta \mathrm{E}=\Delta \mathrm{E}^{0}-\frac{0.0592}{\mathrm{n}} \log \frac{\left[\mathrm{Ni}^{2+}\right]}{\left[\mathrm{Co}^{2+}\right]}
$$

Now cell is in equilibrium state

$$
\therefore \quad \Delta \mathrm{E}=0.01 \text { volt }
$$

$$
\begin{aligned}
& \therefore \log \frac{\left[\mathrm{Ni}^{2+}\right]}{\left[\mathrm{Co}^{2+}\right]}=\mathrm{K}_{\mathrm{c}} \\
& \therefore \quad 0.0=0.05-\frac{0.0592}{2} \log \mathrm{~K}_{\mathrm{c}} .
\end{aligned}
$$

$$
\therefore \quad \log \mathrm{K}_{\mathrm{c}}=-\frac{0.05}{0.0296}
$$

$$
=-(1.6900)
$$

$$
=-1.6900
$$

$$
=-2+1=0.69
$$

$$
=-2+0.31
$$

$\log 0.05$
$\log 0.0296$
2.6990

- $\overline{2} .4713$
0.2217

Antilog $0.2217=1.69$
(3) Energy of 1 photon $=E=\frac{h c}{\lambda}$

$$
\begin{aligned}
\therefore \quad E & =\frac{6.626 \times 10^{-27} \times 3.0 \times 10^{10}}{6000 \times 10^{-8}} \\
& =\frac{6.626 \times 3}{6} \times 10^{-12} \times 10^{-12} \\
E & =3.313 \times 10^{-12} \mathrm{erg} .
\end{aligned}
$$

Now

One einstein $=\frac{\mathrm{Nhc}}{\lambda}=\mathrm{N} . \mathrm{E}$

$$
\begin{aligned}
& =6.023 \times 10^{23} \times 3.313 \times 10^{-12} \\
& =1.994 \times 10^{-12} \text { erg. mole }{ }^{-1} \text { photon }
\end{aligned}
$$

Q. 2. (C)
(1) Derive : The equation for E_{a} of Arhenious rate constant.

Ans.

\Rightarrow Energy of activation of a reaction can be determined from Arhenious equation using K values at different temparatures.

$$
\begin{array}{ll}
\mathrm{K}=\mathrm{A} \cdot \mathrm{e}^{-\mathrm{Ea} / \mathrm{kT}} \quad \text { Where, } & \mathrm{A}=\text { Arhenious constant } \\
\mathrm{E}_{\mathrm{a}} & =\text { activation energy } \\
\mathrm{K} & =\text { rate constant } \\
\mathrm{T} & =\text { Temp. (Kelvin) } \\
\mathrm{R} & =\text { gas constant } \\
\mathrm{K} & =\mathrm{A} \cdot \mathrm{e}^{-\mathrm{E} / \mathrm{RT} T}
\end{array}
$$

$\therefore \log \mathrm{K}=\log \mathrm{A}-\frac{\mathrm{Ea}}{2.303 \mathrm{RT}}$
If $\quad \Rightarrow \mathrm{K}_{1}$ and K_{2} are rate constants
$\Rightarrow \mathrm{T}_{1}$ and T_{2} temperatures of respectively constants.
$\therefore \quad \log \mathrm{K}_{1}=\log \mathrm{A}=\frac{\mathrm{Ea}}{2.303 \mathrm{RT}_{1}}$
$\log \mathrm{K}_{2}=\log \mathrm{A}-\frac{\mathrm{Ea}}{2.303 \mathrm{RT}_{2}}$
$\therefore \quad \log \mathrm{K}_{2}-\log \mathrm{K}_{1}=-\frac{\mathrm{Ea}}{2.303 \mathrm{R}}$ 詯 $\mathrm{X}-\frac{1}{\mathrm{~T}_{1}}$
$\therefore \log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=-\frac{\mathrm{Ea}}{2.303 \mathrm{R}}$ 妿 $-\frac{1}{\mathrm{~T}_{1}}$.
\Rightarrow Eq. (A) is a eq. of $\mathrm{E}_{\mathrm{a}} \mathrm{f}$ Arhenious Rate constant.
\Rightarrow If the rate constant of a reaction are determined at several different temp. the plot of graph

\Rightarrow This graph has a negative slope equal to $-\frac{\mathrm{Ea}}{2.303 \mathrm{R}}$
\Rightarrow The energy of activation can be calculated by determining slope.
(2) Electron configuration of Flourine :

$$
\mathrm{F}(\mathrm{z}=9)=1 \mathrm{~S}^{2}, 2 \mathrm{~S}^{2}, 3 \mathrm{Px}^{2}, 2 \mathrm{Py}^{2}, 2 \mathrm{Pz}^{1}
$$

* When two flourine atoms combine, $18 \mathrm{e}^{-}$are available and they are distributed in various M. O. as follows.

Bond Order :

$$
\begin{aligned}
& \text { Bond Order }=\frac{1}{2}[\mathrm{Nb}-\mathrm{Na}] \\
&=\frac{1}{2}[\mathrm{Nb}-\mathrm{Na}] \\
&=\frac{1}{2}[10-8] \\
&=\frac{2}{2} \\
& \text { Bond order }=1 \\
& \hline
\end{aligned}
$$

$\therefore \mathrm{F}_{2}$ molecule has a single bond
i. e. F-F

Magnetic properties :

\Rightarrow since all electons in F_{2} are paird. F_{2} is a diamagnetic molecule.
Q. 2. (C)
(3) (a) Effect of temperature on the rates of reactions.
\Rightarrow Arrhenius studeid the rates of reaction at different temperature and established the following equation.

$$
\begin{array}{rl}
\mathrm{K} \propto \mathrm{e}^{-\mathrm{E} a / R T} & \mathrm{~K}=\text { Rate constant } \\
\therefore \quad \mathrm{K}=\mathrm{A} \cdot \mathrm{e}^{-\mathrm{E} / / R T} \quad \mathrm{R}=\text { Gas constant } \\
\mathrm{T} & =\text { Kelvin temp. } \\
\mathrm{E}_{\mathrm{a}} & =\text { activation energy } \\
\mathrm{A} & =\text { Arhenous constant }
\end{array}
$$

\Rightarrow The above equation indicates that K increases with a rise in temperature.
\Rightarrow As some of the molecules which do not possess enough energy for reaction gain sufficient energy.
\Rightarrow The rate of collisions also increases with a rise in temperatutre.
\Rightarrow Both of these factors favour an increase in the rate of reactions with a rise in temparature.
(b) $\quad \Rightarrow$ The time taken by a reaction to consume 50% of initial concentration of reactant is called half-reaction time.
\Rightarrow Its relation with rate constant ${ }^{`} \mathrm{~K}$ ' is as follows.

$$
t_{1 / 2}=\frac{0.693}{K}
$$

\Rightarrow Above equation show that half-reaction time does not depend on the intial concentration of reactant.
(4) Construction \& working of 'Daniel Cell'.

Principle :

\Rightarrow Conversion of chemical energy to electrical energy.

Figure :

$\Rightarrow \quad 1 \mathrm{M}$ aqueous ZnSO_{4} solution is taken in container A in which a weighed Zn metal strip is placed as anode.
$\Rightarrow 1 \mathrm{M}$ aqueous CuSO_{4} solution is taken in container B in which a weighed Cu metal strip is placed as cathod.
$\Rightarrow \mathrm{Zn}$ and Cu strips are connected through a galvonometer using a thn conducting metal wire.
\Rightarrow A salt bridge is placed between the two half cells.
\Rightarrow The salt bridge is U-shaped hollow glass tube filled with $\mathrm{NH}_{4} \mathrm{NO}_{3}$ salt solution.
\Rightarrow The functions of salt bridge is
(a) Maintaining electrical neutrality of solutions.
(b) It provides a connection between two solutions.

* Functions : (Reaction)

Anode : $\mathrm{Zn}_{(\mathrm{S})} \rightarrow \mathrm{Zn}_{\text {(aq) }}^{2+}+2 \mathrm{e}^{-}$
Cathode : $\mathrm{Cu}_{(\mathrm{aq})}^{+2}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{S})}$
Cell Reaction: $\mathrm{Zn}_{(\mathrm{S})}+\mathrm{Cu}_{\text {(aq) }}^{+2} \rightarrow \mathrm{Zn}_{(\mathrm{aq})}^{2+}+\mathrm{Cu}_{(\mathrm{S})}$

* Direction of e^{-}: From Anode to Cathode.
* Working :
\Rightarrow When circuit is completed cell is in working position and produced electric current of 1.10 volts.
\Rightarrow According to reaction the weightaight of Zn strips decreases and teh weight of Cu strips increases.
$\Rightarrow \mathrm{SO}_{4}{ }^{-2}$ ions are flow from CuSO_{4} soln through the salt bridge and maintain neutrality of the solutions of both the cells.
Q. 3. (A)
(1)

(2) As acidity of phenol is as weak as that of HCN phenol can not be neutralised by weak base like sodium bicarbonate.
(3) Phenolpthalein indicator obtained from phenol.
(4) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{5}$

Phenoxy benzene
\rightarrow Dimethyl Ethylamine

(5) Freidel - crafts reaction does not take place with aryl halide like chlorobenzene, acetophenone and nitrobenzene.
Q. 3. (B)
(1)

$\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{3}$ Acetone	$\begin{gathered} \text { Oxidation } \\ \mathrm{KMnO}_{4} / \mathrm{KOH} \end{gathered}$	$\mathrm{CH}_{3} \mathrm{COOH}$	Direct Reduction $\mathrm{LiAlH}_{4} / 2 \mathrm{H}_{2}$
	$\begin{aligned} & -\mathrm{H}_{2} \mathrm{O} \\ & -\mathrm{CO}_{2} \end{aligned}$	Acetic Acid	$-\mathrm{H}_{2} \mathrm{O}$
			$\begin{gathered} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \\ \text { Ethanol } \end{gathered}$
$\mathrm{C}_{6} \mathrm{H}_{6}+3 \mathrm{O}_{3}$ benzene	ozonolysis		hydrolysis
	\longrightarrow	$\mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{O}_{3}\right)_{3}$ benzene	$[\mathrm{Zn}]$
		triozonide (unstable)	$+3 \mathrm{H}_{2} \mathrm{O}$

(2)
$\mathrm{C}_{6} \mathrm{H}_{6}+3 \mathrm{~b}_{3}$
benzene
$\mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{O}_{3}\right)_{3}$

$+3 \mathrm{H}_{2} \mathrm{O}$

glyoxal hydrogen peroxide
(3)

	$\xrightarrow[\Delta]{\text { Zn Powder }}$	0	Alklyation $\xrightarrow[{\text { anhy }\left[\mathrm{AlCl}_{3}\right.}]]{\mathrm{CH}_{3} \mathrm{Cl}}$	
Phenol	- ZnO		$80^{\circ} \mathrm{C}$	Toluene
		Benzene	$-\mathrm{HCl}$	

(4)

Q. 3. (C)
(1) (a) At ordinary temperature all he elements of alkali group exhibit body centered cubic type crystal structure with cordination number 8. AT very law temperatures lithium metal shows a hexa gonal close packed crystal structure having cordination number 12. The attractive force holding the atoms or ions to gether in the solid state is called the cohesive energy. Cohesive energy is also a measure of hardness. It depends on the number of bonding electgr5on and their binding energies. The progressive increse in atomic size on going from Li to Cs this electron becomes more and more weakly bound.
(b) The electron negativity of the alkali metal elements is extremely low, when these elements combine with other elements with high electro neativity they from ionic bonds. For example, the electronagetivity of Na is 0.9 and that of Cl is 3.0 owing to the relatively large electronegativity difference of 2.1 , Nacl between two elements is about $1.7-1.8$ then the nature of the bond formed between them is about 50% ionic. Example : LiF and KBr .

(2) Chlorination of Toluene :

Toluene and chlorine at $30^{\circ} \mathrm{C}$ in presence of catalyst FeCl_{3} give a mixture of $\mathrm{O}-$ Chlorotoluene and $\mathrm{P}-$ Chlorotoluene by first chlorination. These two isomers can be separated by Fractional distillation. If temparature is raised in above reaction, second chlorination occurs giving 2, 4-dichlorotoluene.

2: 4- dichloro toluene.
(3) Chlorination of Methyl group

\rightarrow Oxydation of Methyl group.

[O]

benzaldehyde

Benzoic Acid
[O] $\begin{gathered}\downarrow \\ \\ \\ \mathrm{KMnO}_{4} / \mathrm{KOH}\end{gathered}$ COOH

Benzoic Acid
(4) Structure of benzene presented according to Molecular orbital theory.
\rightarrow Benzene has each carbon sp^{2} hybrid the three σ bonds are all planar at 120°.
$\rightarrow 6$ carbon, 6 hydrogens, $6 c-c \sigma b o n d s$ and $6 \mathrm{C}-\mathrm{H} \sigma$ bonds are all in one palne.
\rightarrow Moreover an each six carbons we have $2 \mathrm{P}_{\mathrm{z}}$ orbitals at right angels to the plane, containig on each of 6π electrons.
\rightarrow Molecular orbital theory suggests that due to over planing of $\operatorname{six} 2 \mathrm{P}_{\mathrm{z}}$ orbitals of 6 carbon atoms a large circular shaped - molecular orbital is fermed and these 6π electorn are moving because of their dislocalitation. Thus all six carbon in Benzene are identical.
\rightarrow The charge cloud of benzene contaning 6π electrons also supports its lesser potential energy or justifies its resonance energy.

$$
\begin{array}{cl}
\text { Molecular } & \mathrm{P}_{4} \mathrm{O}_{1 \rho} \text { orbital shape of ring structure of benzene. } \\
\text { ring } & \text { dehydration }
\end{array}
$$

Q. 4. (A)
(1)

Benzamide

Phenyl cyanide
(2) Hemoglobin is a complex combines with oxygen obtained through lungs and forms an intermediate compounds which supplies oxygen to tissues.
(3) S.F. OH

(a)

1-phenyl 1-Ethanol
(b) Vegetable Oil

$$
\begin{aligned}
& \mathrm{CH}_{2} \mathrm{OOC}-\mathrm{C}_{11} \mathrm{CH}_{23} \\
& \mathrm{CHOOC}-\mathrm{C}_{11} \mathrm{H}_{22} \\
& \mid \\
& \mathrm{CH}_{2} \mathrm{OOC}-\mathrm{C}_{11} \mathrm{H}_{23}
\end{aligned}
$$

(4) Preparation of Urea :

(5) Carbohydrates are the principal constituents of food, wheat, rice, maize etc. contains glucose in form of sugars and starch. Metabolism of glucose in body gives energy.
Q. 4. (B) Conversions :
(1)

2 Methyl 2 hydroxy propanoic acid
(2)

(3)

(4) $\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CH}_{3}$

sulphonic acid
Q. 4. (C) Acylation of Aniline :
(1) (i)

\Rightarrow Aniline when heated with acetyl chloride acetic anhydride gives Acetanilide by Acetylation.
(ii) Alkylation :
\Rightarrow Excess of Methyl Iodide when heated with Aniline gives in sequence sec-$\mathrm{N}-$ methyl Aniline and tert - $\mathrm{N}-\mathrm{N}$ dimethyl Aniline by alkylation.

Aniline

-HI

N, N-dimethyl
Aniline (3^{0})
(2) Nitrogen based fertilizer(Nitrolin) :
(a) When a mix of calcium oxide and carbon is heated in an electric furnace at $2000^{\circ} \mathrm{C} . \mathrm{CaC}_{2}$ is formed
$\mathrm{CaO}+3 \mathrm{C} \xrightarrow{2000{ }^{\circ} \mathrm{C}} \mathrm{CaC}_{2}+\mathrm{CO}$
Calcium oxide
Calcium Carbide
$\Rightarrow \mathrm{CaC}_{2}$ is then finely powdered and places in electric furnace having porcus walls at $1200^{\circ} \mathrm{C} \mathrm{N}_{2}$ is passed n to thefurnato which give calcium.cyanamide.

$$
\mathrm{CaC}_{2}+\mathrm{N}_{2} \xrightarrow{1200{ }^{\circ} \mathrm{C}} \mathrm{CaCN}_{2}+\mathrm{C}
$$

\Rightarrow Fine powder of calcium cyanamide is used as Nitrolim [Nitrogen + Lime]
\Rightarrow In the soil containing moisture, Nitrolim hydrolyse giving CaCO_{3} and NH_{3}.
$\mathrm{CaCN}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CaCO}_{3}+\mathrm{NH}_{3}$
(b) Urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$

(3) $\mathrm{CH}_{3} \mathrm{CHO} \quad \xrightarrow[\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}]{(\mathrm{O})} \quad \mathrm{CH}_{3} \mathrm{COOH}$

Acetaldehyde
(A)

Acetic Acid
(B)

Ethyl Acetate $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$
(C)
$\Delta \varliminf_{\downarrow} \mathrm{NH}_{3}$ $\mathrm{CH}_{3} \mathrm{CONH}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{OH}$

Acetamide [D]
[A] = Acetaldehyde
$\mathrm{CH}_{3} \mathrm{CHO}$
[B] = Acetic Acid
$\mathrm{CH}_{3} \mathrm{COOH}$
[C] = Ethyl Acetate
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
[D] = Ethanol
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(4) Azo coupling Reaction :
(1)

Benzene diazonium chloride

Phenol
in NaOH

P-Hydroxy
Azobenzene
(orange Azodye)
(2)

p-Dimethyl Amino azo benzene (Yellow Dye)
\Rightarrow When Benzene diazonium chloride react with phenol in NaOH at $0^{0}-5^{0} \mathrm{C}$ give orange Azo dye by azo-coupling reaction.
\Rightarrow When Benzene diazonium chloride react with $\mathrm{N}-\mathrm{N}$ - dimethyl Aminobenzene in HCl at $0-5^{0} \mathrm{C}$ temp. obtained yellow azo-dye.
(2) Bromination of Aniline :

2: 4: 6
Tribromo Aniline
\Rightarrow Amino grp of Aniline is o-p directing grp.
\Rightarrow When Br_{2} water is added to Aniline and shaken.
\Rightarrow Bromination iin the aromatic nucleus gives white precipitates of 2, 4, 6 tribromo Aniline.
Q. 5. (A) (1) $\mathrm{P}, \mathrm{As}, \mathrm{Sb}$ can form five (maxium) covelent bonds.
(2) The +4 oxidatin state of vanadium exhibits low stability.
(3) Two co-ordinate sites are present in Bidentate ligands and Three coordinate sites are present in Tridente ligands.
(4) IUPAC Name :
$\mathrm{Na}_{4}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]=$ Sodium Hexanitrito Cobaltate (II)
$\mathrm{Fe}(\mathrm{CO})_{5} \Rightarrow$ Penta Carbonyl Iron (O)
(5) (i)Chloro pentamine cobalt (III) sulphate
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$
Potassium Penta cyano carbonyl ferrate (II)
$\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{Co})\right]$

Q. 5. (B) (1) ML_{6} - complex : Geometry of ML_{6} complex :

\Rightarrow The co-ordination number of the central metal ion and the geometry of the complex can be known from the studies of magnetic proerties of the complexes.
$\Rightarrow \mathrm{ML}_{6}$ complex metalion having six-cordination number have octahedral geometry.
\Rightarrow However the Oh is distroted of dofferent ligands are present in the complex.
\Rightarrow When two 3 d , one 4 s and three 4 p orbitals or one 45 , three 4 p and two 4 d orbitals of metal ions of ML_{6} complex get six new equienergic $\mathrm{d}^{2} \mathrm{sp}^{3}$ or $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybrid orbitals are formed and hence an octahedral geometry ligands donates loan pairs to thecentral metal ion.
e.q. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+2}$

(2) In ZnSO_{4} electronic configuration of Zn^{+2}

$$
\begin{aligned}
& 3 \mathrm{~d}^{10} \quad 4 \mathrm{~S} \\
& { }_{30} \mathrm{Zn}^{+2}=3 \mathrm{~d}^{10} 4 \mathrm{~S}^{0} \quad \begin{array}{|l|l|l|l|l|}
\hline 1 l & 11 & 1 l & 1 & 1 / \\
\cline { 2 - 6 }
\end{array}
\end{aligned}
$$

\Rightarrow In NiSC_{4}, electronic configuration of Ni^{2+}

\Rightarrow In NiSO ${ }_{4} \mathrm{~d}^{8}$ arrangement contains unpaired electron. Hence $\mathrm{d}-\mathrm{d}$ transition is possible. \therefore So NiSO_{4} is coloured.
\Rightarrow In $\mathrm{ZnSO}_{4} \mathrm{~d}^{10}$ configuration d-d transition is not possible. Hence ZnSO_{4} is colourless.
(3) Inert gases

At. No.	Symbol	Name	Electronic configurati
2	He	Helium	$1 \mathrm{~s}^{2}$
10	Ne	Neon	$1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$
18	Ar	Argon	$[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$
36	Kr	Krypton	$[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6}$
54	Xe	Xenon	$[\mathrm{Kr}] 4 \mathrm{~d}^{10} 5 \mathrm{~s}^{2} 4 \mathrm{p}^{6}$
86	Rn	Radon	$[\mathrm{Xe}] 4 \mathrm{f}^{14} 5 \mathrm{~d}^{10} 6 \mathrm{~s}^{2} 6 \mathrm{p}^{5}$

Q. 5. (C) (1) ${ }^{*} \operatorname{In~} \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
$\Rightarrow \quad \mathrm{Fe}$ is present as Fe^{3+-}
$\Rightarrow \quad$ Electronic configuration of Fe^{3+} as below :

$$
\begin{aligned}
& \mathrm{Fe}^{3+}=[\mathrm{Ar}] \\
& \left(3 \mathrm{~d}^{5} 4 \mathrm{~s}^{0}\right)
\end{aligned}
$$

* For $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridization electronic configuration :

$$
\begin{aligned}
& \mathrm{CN}^{-} \mathrm{CN}^{-} \mathrm{CN}^{-} \mathrm{CN}^{-} \mathrm{CN}^{-} \mathrm{CN}^{-} \\
& {\left[\mathrm{Fe}(\mathrm{CN}){ }_{6}\right]^{3-}=[\mathrm{Ar}]}
\end{aligned}
$$

\Rightarrow For $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridization rearrangement of electrons take place in orbitals and make two vaccant orbitals.
\Rightarrow Now two 3d vacant orbitals, one 4 s and three vacant 4 p orbitals forming six equienergenic $d^{2} s^{3}$ hybrid orbitals by $d^{2} s^{3}$ hybridization in which six electron pair of ligand are accomodated.
\Rightarrow There is 1 unpaired electron so $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-3}$ complex is paramagnetic.
Q. 5. (C)
(1) For $\mathrm{Sp}^{3} \mathrm{~d}^{2}$ hybridization :

$$
\mathrm{sp}^{3} \mathrm{~d}^{2}
$$

3d

$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}=[\mathrm{Ar}] \quad$| 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | xx | xx xx xx
 xx xx |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\Rightarrow For $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridization rearrangement of electrons do not necessary.
\Rightarrow Hence one 4 s , three 4 p and two 4 d orbitals forms $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridization.
\Rightarrow Six e^{-}pairs of ligands $\left(\mathrm{CN}^{-}\right)$accomodate in six equal energenic hybrid orbitals to form Oh shape.
\Rightarrow Here five electrons are unpaired
\therefore So it is also paramagnetic.
But experimentally $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ is paramagnetic and its magnetic momentum is nearly $1-73 \mathrm{~B}-\mathrm{M}$, hence it indicates that $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ complex contain $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridization not $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridization.
(2) Allotropes of Arsenic \& Antimony.
(1) Arsenic: (As)

Arsenic has three allotropes :
(a) Grey Arsenic : \Rightarrow It is crystalline and good conductor of electricity.
$\Rightarrow \quad$ It has mettalic character.
(b) Yellow Arsenic $: \Rightarrow$ It is a good electrical and thermal conductor.
(c) Black Arsenic : $\Rightarrow \quad$ It is a non conductor of heat and electricity.
$\Rightarrow \quad$ It has mixed properties of a metal and non metal.
(2) Antimony : (Sb)

There are two Alltropes of Antimony.
(a) Yellow or α-Antimony
\Rightarrow It is stable
(b) Mettalic or β-Antimony \Rightarrow It is silvery white.
(3) Electronic configuration of Transition Metals.

Scandium	Sc	21	$[\mathrm{Ar}] 3 \mathrm{~d}^{1} 4 \mathrm{~s}^{2}$
Titanium	Ti	22	$[\mathrm{Ar}] 3 \mathrm{~d}^{2} 4 \mathrm{~s}^{2}$
Vanadium	V	23	$[\mathrm{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2}$
Chromium	Cr	24	[Ar] 3d $4 \mathrm{~s}^{1}$
Manganese	Mn	25	[Ar] 3d $4 \mathrm{~s}^{2}$
Iron	Fe	26	[Ar] 3d $4 \mathrm{~s}^{2}$
Cobalt	Co	27	[Ar] 3d $4 \mathrm{~s}^{2}$
Nickel	Ni	28	[Ar] 3d $4 \mathrm{~s}^{1}$
Copper	Cu	29	[Ar] 3d ${ }^{10} 4 \mathrm{~s}^{1}$
Zinc	Zn	30	[Ar] 3d ${ }^{10} 4 \mathrm{~s}^{2}$

(4) In $\mathrm{CuCl}_{2} \rightarrow \mathrm{Cu}$ is $\rightarrow \mathrm{Cu}^{+2}$
(a) $\mathrm{Cu}^{2+}{ }_{2 \mathrm{a}} \Rightarrow 3 \mathrm{~d}^{9} 4 \mathrm{~s}^{0}$
\Rightarrow In $\mathrm{CuCl}_{2} \mathrm{~d}^{9}$ configuration has one unpaired electron. There fore it is paramagnetic
In $\mathrm{CuCl} \rightarrow \mathrm{Cu}$ is Cu^{+1}

$\mathrm{Cu}^{+1} \rightarrow 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{0} \quad$	$1 L$	$1 L$	$1 L$	$1 l$	1

$\Rightarrow \mathrm{CuCl}$ contains all paired electrons so it is diamagnetic
(b) The electron configuration of $\mathrm{Ti}^{3+} \& \mathrm{Ti}^{+4}$ are as below.
$\mathrm{Ti}^{3+}=[\mathrm{Ar}] 4 \mathrm{~s}^{0} 3 \mathrm{~d}^{1}$
$\mathrm{Ti}^{+4}=[\mathrm{Ar}] 4 \mathrm{~s}^{0} 3 \mathrm{~d}^{0}$

\Rightarrow If transition elements or ions have $\mathrm{d}^{0}, \mathrm{~d}^{5}, \mathrm{~d}^{10}$ electronic configuration then it is stable.
$\Rightarrow \quad \mathrm{Ti}^{+4}$ is more stable.
\Rightarrow Since removal of $4 \mathrm{e}^{-}$from Ti atom requires very large amount of energy.
\Rightarrow There fore Ti^{4+} ion is not possible but (+4) oxidation state is found in covalent compound. eq. TiCl_{4}

