CHEMISTRY (052) E
 Question Paper-IV

Total Marks : 100
Time : 3 Hours

Atomic weights : $\mathrm{Na}=23, \mathrm{Mg}=24, \mathrm{Cl}=35.5 \mathrm{gm} / \mathrm{mole}$

Q. 1. (A) Answer the following questions in short

(1) Why absolute value of free energy G^{0} cannot be determined ?
(2) Give conjugate base of $\mathrm{HPO}_{4}{ }^{2-}$ and NH_{3}.
(3) Give importance of $E=m c^{2}$ equation.
(4) How are double chain structures in silicate compounds formed?
(5) What does symbol $\mathrm{A}_{(1-\mathrm{x})} / \square_{\mathrm{A}}$ indicate ?
(B) Solve any two examples.
(1) Calculate free energy change and equilibrium constant of following cell. if standard potential of the cell is 0.78 volt at $25^{\circ} \mathrm{C}$.
$\mathrm{Fe}_{(\mathrm{s})} / \mathrm{Fe}^{2+}(1 \mathrm{M}) / / \mathrm{Cu}^{2+}(1 \mathrm{M}) / \mathrm{Cu}_{(\mathrm{s})}$
$\mathrm{E}_{\mathrm{Fe} / \mathrm{Fe}^{+2}}^{0}=0.45 \mathrm{~V} ; \mathrm{E}_{\mathrm{Cu} / \mathrm{Cu}^{+2}}^{0}=0.34 \mathrm{~V}$
(2) Calculate pH of 0.25 M CH 33 COONa solution. Ka of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.75×10^{-5} at $25^{0} \mathrm{C}$.
(3) 0.1 mole solid $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ and 0.001 mole solid $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ are added in $9.92 \times 10^{-8} \mathrm{M}_{2} \mathrm{HO}_{4}$ solution such that its volume does not change. Which salt BaSO_{4} or CaSO_{4} will precipitate ?
Ksp of $\mathrm{BaSO}_{4}=9.9 \times 10^{-11}$ and Ksp of $\mathrm{CaSO}_{4}=2.4 \times 10^{-5}$
(C) Explain the following questions. (Any three)
(1) State first law of thermodynamics. Explain its relation with work.
(2) Explain (i) Hydration of NaCl
(ii) Hydrolysis of CuSO_{4} in water
(3) Explain (i) Ultra marines.
(ii) Importance of first law of thermodynamics.
(4) Explain (i) Amorphous solids
(ii) Crystal structure of ZnS (figs. not required)
Q. 2. (A) Answer the following questions in short.
(1) What is called one faraday ?
(2) What is known as electrolytic cell ?
(3) Define : specific rate constant of reaction.
(4) What is called nodal plane ? Which type of molecular orbitals possess nodal plane ?
(5) Why SF_{6} is stable through it is formed from excited state ?
(B) Solve any two examples.
(1) Fused MgCl_{2} and NaCl are connected in series and same current is passed through them. During this period, 142 gm . of Cl_{2} gas is evolved. How much Mg and Na would be produced during this period ?
(2) In a first order reaction, the concentration of reactant decreases from 0.8 M to 0.6 M in 2700 seconds. Calculate half-life of the reaction.
(3) Calculate wavelength of particle weighing 500 milligram and moving with a velocity of $3600 \mathrm{~km} /$ second ($\mathrm{h}=6.626 \times 10^{-27} \mathrm{erg}$.)
(C) Explain any three of following.
(1) Explain : "Fuel cell"
(2) Derive integrated rate law equation for first order reaction.
(3) Explain (i) Energy barrier
(ii) Difference between BMO and ABMO
(4) Give molecular orbital diagram of O_{2} molecule. Calculate its bond order and predict its magnetic property.
Q. 3. (A) Answer the following objectives.
(1) Why the temperature for the bromination of benzene is maintained higher ?
(2) Give structural formula of glycerol and DDT.
(3) Give the equation of reaction when ethanol is reacted with PI_{3}.
(4) What is half-life of francium ? Why does it not occure free in nature ?
(5) Which of the following reaction is possible ? Why ?
(i) $\mathrm{Cl}_{2}+2 \mathrm{KF} \rightarrow 2 \mathrm{KCl}+\mathrm{F}_{2}$
(ii) $\mathrm{F}_{2}+2 \mathrm{KCl} \rightarrow 2 \mathrm{KF}+\mathrm{Cl}_{2}$
(B) Give equations of following conversions (any three). Mention name, structures of organic compounds and necessary conditions. (only in two steps)
(1) Benzene into TNT.
(2) Toluene into Benzoyl chloride
(3) Di ethyl ether into n-butane.
(4) Chlorobenzene into sodium phenoxide
(C) Explain any three of following.
(1) Explain (1) Ozonolysis of benzene and its importance
(2) Toluene has one isoner while xylene has three isomers.
(2) Explain (1) B-elimination reaction
(2) Classification alkyl halides
(3) Explain (i) Crystal structures of alkali metal elements.
(ii) Density of alkali metals.
(4) Explain : Preparation of halogen acids

Q. 4. (A) Answer the following objectives

(1) Give structural formula of diethyl ketone and acetone cyanohydrine.
(2) What is called formaline ? Give its use.
(3) Give equation of bromination of aniline.
(4) What are called optical brightners ?
(5) Give two different names of iso cyanide compounds.
(B) Give equations of any three conversions. Mention names, structures of organic compounds. Also state necessary reaction conditions. (only in two steps)
(1) Acetophenone into Ethyl benzoate
(2) Acetic acid into ethene.
(3) Nitro benzene into acetanilide
(4) Benzene diazonium chloride into phenyl acetate.
(C) Explain the following questions (any three)
(1) Explain (i) Condensation of ethanal
(ii) Wolf-kishner reduction
(2) Explain preparation of amide. Give its two different chemical properties with equations.
(3) Explain (i) Degree of polymerisation
(ii) preparation of polystyrene and its uses.
(4) Explain (i) Hormones and its importance
(ii) CNS and CND drugs.
Q. 5. (A) Answer the following objectives.
(1) Give two characteristics of black arsenic.
(2) Give the compound of manganese in highest oxidation state. What is its characteristic?
(3) Give IUPAC name.
(i) $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{OX})_{2}(\mathrm{CN})_{2}\right]$
(ii) $\left[\mathrm{Mn}(\mathrm{en})_{2} \mathrm{Br}_{2}\right] \mathrm{NO}_{3}$
(4) Give the molecular formula of calcium phosphide and stibine
(5) Give electron configuration of $\mathrm{Bi}(\mathrm{Z}=83) \mathrm{Br}\left(\mathrm{z}^{*}=35\right)$ elements.
(B) Answer the following questions.
(1) Explain allotropes of phosphorous
(2) Explain properties of interstitial compounds.
(3) Give only importance of chlorophyl and hamoglobin
(C) Explain the following questions. (any three)
(1) Explai : bi dentate and hexadentate ligands with illustrations.
(2) Explain coloured ions of transition elements.
(3) Explain Wenner's theory.
(4) Explain nature of bonding of V-A group elements.

Marking Scheme

Q. 1. (A) Answer the following objectives

(1) According to equation $\mathrm{G}=\mathrm{H}-\mathrm{TS}$, the value of G depends on enthalpy and absolute value of enthalpy cannot be determine. \therefore G cannot be determine
(2) Conjugate base : $\mathrm{HPO}_{4}^{2-} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{3-}$

$$
\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{2}^{-}
$$

(3) Importance of $\mathrm{E}=\mathrm{mc}^{2}$ equation.
(i) mass is itself is one form of energy
(ii) Thus, if mass is converted into heat energy, extremely large amount of heat can be produced
(4) When half the Si atoms in chain silicates shares with more O -atoms, then bent or double chain silicates are formed
(5) This symbol indicates that atom A occupies (1-x)th part of its normal lattice site and remaining site being vacant
(B) Solve any two examples (Each of 3 marks)
(1) Here, $\mathrm{n}=2$ mole and $\Delta \mathrm{E}^{0}=0.78$ V

$$
\begin{aligned}
\therefore \quad \Delta \mathrm{G}^{0} & =-\mathrm{nF} \Delta \mathrm{E}^{0}(\text { total mark } 11 / 2) \\
& =-2 \times 96500 \times 0.78 \text { volt. quolomb } \\
& =-88140 \text { joules }
\end{aligned}
$$

$$
\text { But } 4.183 \mathrm{j} \leftrightarrow 1 \mathrm{cal}
$$

$$
-88140 \mathrm{j} \rightarrow(?)
$$

$$
\therefore \Delta \mathrm{G}^{0}=-21071 \mathrm{cal}
$$

Now $\quad \Delta \mathrm{G}^{0}=-2.303 \mathrm{RT} \log \mathrm{Kc}$

$$
\begin{aligned}
-21.071 & =-2.303 \times 1.987 \times 10^{-3} \times 298 \times \log \mathrm{Kc} \\
\therefore \quad \mathrm{Kc} & =\frac{21.70}{2.303 \times 1.987 \times 10^{-3} \times 298} \\
& =\frac{21.70}{1363.7 \times 10^{-3}} \\
& =15.4513
\end{aligned}
$$

$$
\therefore \quad \mathrm{Kc}=\text { Anti }(15.4513)
$$

$$
\mathrm{Kc}=2.8 \times 10^{15}
$$

(2) Here, total volume $\mathrm{V}=1$ litre $=1000 \mathrm{ml}$
\therefore Molar solubility of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}=0.1 \times \frac{1000}{\mathrm{~V}_{\mathrm{ml}}}=0.1 \times \frac{1000}{1000}$
Similarly, molarity of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=\frac{0.001 \times 1000}{1000}=0.0001 \mathrm{M}$
Now,

$$
\begin{array}{lll}
\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} & \rightarrow & \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{NO}_{3}^{-}{ }_{(\mathrm{aq})} \\
0.1 \mathrm{M} & & 0.1 \mathrm{M} \\
\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} & \rightarrow & \mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{M} \\
0.001 \mathrm{M} & & 0.001 \mathrm{M} \mathrm{NO}_{3}^{-}{ }_{(\mathrm{aq})} \\
\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} & \rightarrow & 0.002 \mathrm{M} \\
9.92 \times 10^{-8} \mathrm{M} & & \\
(\mathrm{aq})
\end{array}+\mathrm{SO}_{4}^{2-}{ }_{(\mathrm{aq})} .9 .92 \times 10^{-8} \mathrm{M}
$$

Now : IP of CaSO_{4} :

$$
\begin{aligned}
\mathrm{CaSO}_{4(\mathrm{~s})} & \rightleftharpoons \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}^{-2}(\mathrm{aq}) \\
\mathrm{Ip} & =\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right] \\
& =(0.1)\left(9.92 \times 10^{-8}\right) \\
\mathrm{IP} & =9.92 \times 10^{-9}
\end{aligned}
$$

But Ksp $=2.4 \times 10^{-5}$. $\mathrm{IP}<\mathrm{Ksp}$
$\therefore \mathrm{CaSO}_{4}$ will not prêcipitate
Similarly, IP of BaSO_{4} :

$$
\begin{aligned}
\mathrm{BaSO}_{4(\mathrm{~s})} & \rightleftharpoons \mathrm{Ba}_{(\mathrm{aq})}^{2+}+\mathrm{SO}_{4}^{2-}{ }_{(\mathrm{aq})} \\
\mathrm{Ip} & =\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SP}_{4}{ }^{2-}\right]=(0.001) \times\left(9.92 \times 10^{-8}\right)=9.9210^{-11}
\end{aligned}
$$

$\therefore \mathrm{Ip}>\mathrm{Ksp} \quad \therefore \mathrm{BaSO}_{4}$ will precipitate
(2) $\mathrm{CH}_{3} \mathrm{COONa}$ is a salt of NaOH and $\mathrm{CH}_{3} \mathrm{COOH}$ Thus, it undergoes hydrolysis
$\mathrm{CH}_{3} \mathrm{COONa}_{(\text {(aq) }} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}+\mathrm{Na}^{+}{ }_{\text {(aq) }}$
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
$\therefore \frac{\mathrm{Kw}}{\mathrm{Ka}}=\frac{[\mathrm{O} \overline{\mathrm{H}}]^{2}}{\mathrm{Co}} \therefore\left[\mathrm{OH}^{-}\right]=\sqrt{\frac{\mathrm{Kw} \cdot \mathrm{Co}}{\mathrm{Ka}}}=\sqrt{\frac{1 \times 10^{-14} \times 0.25}{1.75 \times 10^{-5}}}$
$\therefore \quad\left[\mathrm{OH}^{-}\right]=1.2 \times 10^{-5} \mathrm{M}$

$$
\begin{array}{rlrl}
\therefore & \mathrm{pOH} & =-\log \left[\mathrm{OH}^{-}\right]=-\log \left[1.2 \times 10^{5}\right]=-[5-0.0969] \\
& \mathrm{pOH} & =4.9031 \mathrm{c} & \therefore \mathrm{pH}+\mathrm{pOH}=14.00 \\
& \therefore & \mathrm{pH} & =14-4.9031=9.0969 \tag{9}
\end{array}
$$

Q. 1. (C) Answer any three (Each of 3 marks)

(1) First law :

(i) Energy is neither created nor destroyed
(ii) Total energy in the world is constant

Work : If a force acts on a body and the point on which the force acts is displaced in any direction, we say that the work is done.

There are two types of work in chemistry
(i) Electrical work and (ii) Mechanical work
\rightarrow Electrical work is importance in reactions involving ions. While mechanical work is important in reactions involving gase.
\rightarrow In gaseous process, the volume of the system changes under constant external pressure Thus, if volume increases, work is done by the system and if volume decreases, work is done on the system.
$\therefore \quad$ work done $\mathrm{W}=\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=\mathrm{P} \Delta \mathrm{V}$
Now : If only P.V type work is done, then, at constant pressure $q=q(v)$ and $\mathrm{W}=-\mathrm{P} \Delta \mathrm{V} . \therefore$ According to $\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}, \Delta \mathrm{E}=\mathrm{q}(\mathrm{v})-\mathrm{P} . \Delta \mathrm{V}$. But if volume does not change then $\mathrm{P} \Delta \mathrm{V}=0 . \therefore \Delta \mathrm{E}=\mathrm{qv}$

This indicates that internal energy change of reaction at constant volume is equal to the heat lost or gain by the system.

(2) Hydration of NaCl

(1) \rightarrow When a salt dissolves in water, some definite no. of water molecules attaches to the ions of salt.This is known as hydration. e.g. NaCl in water.
$\mathrm{NaCl}_{(\mathrm{s})} \xrightarrow{12 \mathrm{H}_{2} \mathrm{O}_{(l)}}\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}{ }_{(\mathrm{aq})}+\left[\mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{-}{ }_{(\text {aq })}$
This, Na^{+}is Lewis acid and $\mathrm{H}_{2} \mathrm{O}$ is Lewis base.
Similarly Cl^{-}is Lewis base and $\mathrm{H}_{2} \mathrm{O}$ is Lewis acid.
(2) Hydrolysis of $\mathrm{CuSO}_{4}: \mathrm{CuSO}_{4}$ is a salt of base $\mathrm{Cu}(\mathrm{OH})_{2}$ and acid $\mathrm{H}_{2} \mathrm{SO}_{4}$. It hydrolysis as follows :

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} & \rightleftharpoons \mathrm{H}_{(a q)}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-} \\
\mathrm{CuSO}_{4(\mathrm{aq})} & \rightarrow \mathrm{Cu}_{(\mathrm{aq})}^{2+}+\mathrm{SO}_{4}^{2-} \\
\mathrm{Cu}^{2+}{ }_{(\text {aq) }}+2 \mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{O}^{+}
\end{aligned}
$$

Explanation : According to text book.

(3) Explain :

(1) Ultramarines

They are known as for their attractive colours
Blue $\rightarrow \mathrm{S}_{2}{ }^{2-}$, Green : $\mathrm{S}_{2}{ }^{2-}, \mathrm{S}_{3}{ }^{2-}$ and Red : $\mathrm{S}_{2}{ }^{2-}, \mathrm{S}_{3}{ }^{2-}$ and $\mathrm{S}_{4}{ }^{2-}$ ions.
(2) Importance of first law of thermodynamics.
(i) Bond energy (ii) Heat of formation of compounds (iii) heat of combustion (iv) Enthaly charge and internal energy changes can be determined.
(4) Explain : (1) Amorphorus solids :
\rightarrow Solids which do not have ordered arrangement or definite pattern of symmetry of their constituent particles like atoms, ions or molecules are called amorphous solids.

Explain : acc. to text book page no.
(2) Crystal structure of Zns

There are two forms of Zns. (i) Zinc bend (ii) Wrutzite.
\rightarrow As C -atoms are arranged in tetrahedral shape, Zn^{2+} and S^{2-} ions are also arranged in tetrahedral shape.
\rightarrow In Wurtzite, Zn^{+2} ions ... hexagonal str.
Zinc blene, S^{2-} ions ... Face centered cubic str.
\rightarrow In Zns, Zn shares its two Valence ēs and s shares its six Valence ēs making total 8 es. for four covalent bond.
$\therefore \quad$ Each ions has co-ordination number $\rightarrow 4$
Q. 2. (A) (1) The quantity of electricity carried by 1 mole electrons is called one Faraday. $1 \mathrm{~F}=96500 \mathrm{C}=6.023 \times 10^{23}$ electrons
(2) The device in which redox reaction is carried out by passing current through fused or aqueous solutions of electrolytes is called electrolytic cell.
(3) When concentration of each of the reactant in a reaction is 1 M i.e. unity, then rate of reaction becomes equal to the rate constant. Such rate constant is called specific rate constant.
(4) The surface or plane having zero probability of electron is called nodal plane.
π and π^{*} molecular orbital possess nodal planes.
(5) Because energy released during formation of more no. of bonds in SF_{6} is greater than energy absorbed in unpairing of electrons.
(B) Solve any two examples (Each of three marks)
(1) Molecular weight of $\mathrm{Cl}_{2}=71 \mathrm{gm} / \mathrm{mole}$
\therefore mole of $\mathrm{Cl}_{2}=\frac{142}{71}=2.0$
 1 mole 2F 2 mole
$\therefore \quad$ Faraday $=4.0=4 \times 96500$ coulombs
Now Cathode : $\mathrm{Mg}^{2+}{ }_{(\mathrm{l})}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}_{(\mathrm{s})}$ 2F 1 mole
$2 \mathrm{~F} \rightarrow 1$ mole Mg
$4 \mathrm{~F} \rightarrow$? $\quad \therefore$ moles of $\mathrm{Mg}=2.0 \therefore$ wt. of $\mathrm{Mg}=2 \times 24=48 \mathrm{gms}$
Similarly : Cathode : $\mathrm{Na}_{(1)}+\mathrm{e}^{-} \rightarrow \mathrm{Na}_{(\mathrm{s})}$ 1 mole 1 mole (1F)
Thus, 1F $\rightarrow 1$ mole Na
$4 \mathrm{~F} \rightarrow(?) \therefore$ moles of $\mathrm{Na}=4 \therefore$ weight of $\mathrm{Na}=4 \times 23=92 \mathrm{gm}$.
(2) $\mathrm{K}=\frac{2.303}{\mathrm{t}} \times \log \frac{\mathrm{C}}{\mathrm{C}_{\mathrm{o}}}$
$=\frac{2.303}{2700} \times \log \frac{0.8}{.6}$
$=\frac{2.303}{2700} \times(9.9031-\overline{1} .778)$
$=\frac{2.303}{2700} \times 0.1253$
$\mathrm{K}=383.4$ second $^{-1}$
Now : $t_{1 / 2}=\frac{0.693}{K}=\frac{0.693}{3834}$
$\mathrm{t}_{1 / 2}=6504$ seconds
(3) Velocity V $=3600 \mathrm{~km} /$ second $=3600 \times 10^{5} \mathrm{~cm} /$ second

$$
\begin{aligned}
& \lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{6.626 \times 10^{-27}}{500 \times 10^{-3} \times 3600 \times 10^{5}}=\frac{6.626 \times 10^{-27}}{1800000 \times 10^{2}}=\frac{6.626 \times 10^{-27}}{1.8 \times 10^{8}} \\
& \lambda=3.68 \times 10^{-5} \mathrm{~cm}=3.68 \times 10^{-27} \mathrm{~A}^{0}
\end{aligned}
$$

\rightarrow Such extremely small λ cannot be determined by experiment.
\therefore wave nature concept cannot be applied to such particle.
(C) Answer any three: (Each of 3 marks)
(1) Fuel cell : fig. and construction of cell

Equations at electrodes
\rightarrow importance of the cell
(2) Integrated rate law :

$$
\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \quad \therefore-\frac{\mathrm{d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=\mathrm{K} .\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]
$$

\therefore But $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\mathrm{C} \therefore-\frac{\mathrm{dc}}{\mathrm{dt}}=$ K.C $\therefore-\frac{\mathrm{dc}}{\mathrm{c}}=\mathrm{K} . \mathrm{dt}$
\rightarrow Now : Integrating this equation

$\therefore 2.303 \times \log \frac{\mathrm{w}}{\mathrm{c}}=\mathrm{Kt} \therefore \mathrm{K}=\frac{2.303}{\mathrm{t}} \times \log \frac{\mathrm{Co}}{\mathrm{C}} \mathrm{time}^{-1}$
(3) Explain : (1) Energy barrier
\rightarrow There is a presence of energy barries between molecules of reactant and product during reaction.
\rightarrow The height of energy barier is an important factor determining rate of reaction.
\rightarrow If height is more, rate is less and height is less, rate is more.
\rightarrow Energy barrier decreases in presence of catalyst. \therefore rate of reaction increases.
(2) Difference between BMO and ABMO (each point $1 / 2$ mark)

BMO	ABMO
\rightarrow lower energy	\rightarrow higher energy
\rightarrow indicated as	\rightarrow Indicated as σ^{*}, π^{*}
\rightarrow helps in bonding	\rightarrow opposes in bonding

(4) \rightarrow Molecular orbital diagram with labbels and es.
\rightarrow Calculation of bond order B.O. $=1 / 2[10-6]=2.0$
\rightarrow Magnetic property : two unpd. es. Paramagnetic
Q. 3. (A) Answer the following questions (Each of 1 mark)

5
(1) Because rate of bromination of benzene is very slow.
(2)

(3) $3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{PI}_{3} \rightarrow 3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}+\mathrm{H}_{3} \mathrm{PO}_{3}$

Ethanol
Ethyl iodide
(4) $\mathrm{Fr}, \mathrm{t}_{1 / 2}=21$ minutes. It is radio active therefore does not occur in nature.
(5) $\mathrm{F}_{2}+2 \mathrm{KCl} \rightarrow 2 \mathrm{KF}+\mathrm{Cl}_{2}$ is possible.

Because reactivity of $\mathrm{F}>\mathrm{Cl} \therefore \mathrm{F}$ can displace Cl .
(B) Conversions (any three) (Each of two mark)
(1)

Benzene

(2)

(3)
Δ
$\longrightarrow \quad 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I} \quad+\mathrm{H}_{2} \mathrm{O}$

$\underset{\substack{\text { Et-iodide }}}{2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}}+\underset{\text { sodium }}{2 \mathrm{Na}} \xrightarrow[\text { Wurt }]{\text { Dry ether }} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}+2 \mathrm{NaI}$
(4) Cl

(C) Answer the following (any three) (Each of 3 marks)
(1) Explain : $\mathrm{C}_{6} \mathrm{H}_{6}+3 \mathrm{O}_{3} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{O}_{3}\right)_{3}$
 Benzene Ozone BTO O Glyoxal

Importance (i) Three $\mathrm{C}-\mathrm{C}$ single bonds, three $\mathrm{C}=\mathrm{C}$ double bond
(ii) benzene has hexagonal cyclic structure
(2) Acc. to M.O. theory 6 C and 6 H atoms are indentical

 (1:4)
\rightarrow Explain of one isomer of toluene
\rightarrow Explanation of three isomers of xylenes
[2](1) β-elimination :

OR
Ethanol

(2) Classification of alkyl halides primary ... $\quad \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}$
secondary ... $\mathrm{CH}_{3}-\underset{\text { | }}{\mathrm{CH}}-\mathrm{CH}_{3}$
Cl
tertiary ...

Cl
[3] (1) Crystal str. of alkali metals
$\rightarrow 8$ coordination no. and $\mathrm{BCC}-$ str.
\rightarrow Li at V. low temp., 12 co-ordi. no. \& hcp str.
(2) Alkali metals have very large size. So they have remarkably low density
$\mathrm{Li} \rightarrow$ half the density of water
$\mathrm{Na} \rightarrow$ slightly less density than water
[4] Preparation of halogen acids (Discription is required)
(i) $\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow[\Delta]{\longrightarrow} \mathrm{CaSO}_{4}+2 \mathrm{HF}$ conc.
(ii) $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\Delta} \mathrm{NaHSO}_{4}+\mathrm{HCl}$ Conc.

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \xrightarrow{\text { direct }} 2 \mathrm{HCl}
$$

(iii) $\mathrm{H}_{2}+\mathrm{Br}_{2} \xrightarrow[\Delta]{[\mathrm{pt}]} 2 \mathrm{HBr}$
(iv) $3 \mathrm{KI}+\mathrm{H}_{3} \mathrm{PO}_{4} \longrightarrow 3 \mathrm{HI}+\mathrm{K}_{3} \mathrm{PO}_{4}$
Q. 4. (A) Answer following in short (Each of half-mark)
(1)

Di-Et-Ketone

(2) Formaldehyde is gas but its aqueous solution is known as formaline

Uses : In preservation of dead bodies of animals
(3)

2,4,6 Tri bromo aniline
(4) Some colourless organic compounds have affinity toward the fabric. Moreover, they have fluorescent properly in presence of sunlight. Such compounds are called optical brightness.
(5) Two difference names of isocyanides are
(i) Carbyl amine compounds and
(ii) Iso-nitriles
(B) Any three conversions (Each of 2 marks)
(1)

Aceto- $-\mathrm{CO}_{2},-\mathrm{H}_{2} \mathrm{O}$

Benzoic conc. $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$ Et.-benzoate phenone acid Δ
(2)

$$
\begin{array}{ccccc}
\mathrm{CH}_{3} \mathrm{COOH} & \xrightarrow[\mathrm{LiAlH}_{4}]{2 \mathrm{H}_{2}} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} & \xrightarrow{\left[\mathrm{Al}_{2} \mathrm{O}_{4}\right]} & \mathrm{CH}_{2}=\mathrm{CH}_{2} \\
\begin{array}{c}
\text { Acetic } \\
\text { acid }
\end{array} & -\mathrm{H} 2 \mathrm{O} & \text { Ethanol } & -\mathrm{H}_{2} \mathrm{O} & \text { Ethene } \tag{1}\\
& & & &
\end{array}
$$

(4)

[C] Answer any three (Each of three mark) 9
(1) Explain (1) Condensation of ethanal

$\mathrm{N}_{2} \mathrm{H}_{4} \mid \mathrm{KOH}$
(2)

Acetaldehyde

[2] Preparation of amide :

* Any two chemical reactions
[3] Explain :
(i) Degree of polymerisation
\rightarrow No. of repeating units is called d. p.
\rightarrow If d. p. >25... heavy polymers
\rightarrow If d. p. <25... light polymers
(ii)
n

styrene
(n-molecules)

polystyrene

Uses : In buttons, tooth brush handes, cock of botle, pipes, In cabinates of radio, freez, TV etĉ.
(4) Explain :
(1) Hormones
\rightarrow Secretion of chemical messanger in ductless glands.
\rightarrow Inhibites circulation
(2) CNS and CND durgs :
\rightarrow some compounds like opium, morphin etc. decreases the activity of CNS
\rightarrow Some compounds like hashish, marijuana, Ethanol increase the activity to CNS
Q. 5. (A) Answer the following in short (Each one mark)
(1) Black As : (i) Mixed properties of metal and non metals.
(ii) Non-conductor of heat adnd electric current.
(2) KMnO_{4}, strong oxidizing property
(3) (i) Potassium dicyano bis (oxalato) cobaltate (III)
(ii) Dibromo bis (ethylene diamine) manganese (III) nitrate
(4) $\mathrm{Ca}_{3} \mathrm{P}_{2}$ and SbH_{3}
(5) $\operatorname{Bi}(Z=83)[X e]$ to $4 f^{14} 5 d^{10} 6 s^{2} 6 p^{3}$
$\operatorname{Br}(Z=35) .[A r] 3 d^{10} 4 s^{2} 4 p^{5}$
[B] Answer the following : (Each of two marks)
(1) Allopropes of phosphorous yellow phospherous and its characteristics
(2) Properties (any four)
(i) Bonding forces increase
(ii) m.p. and b.p. increases.
(iii) Hardness increases
(iv) good electrical conductors.
(v) lusture like metal
(3) Chlorophy: $\quad \rightarrow$ essential for photosynthesis.
\rightarrow responsible for geen colour of plants.
Hemoglobin: \rightarrow Provides O_{2} to the muxles.
\rightarrow resoponsible for red colour of blood.

Q. 5 (C) Answer the following (any three) (Each three mark)

(1) Didentate : two co-ordination sites
eq. $\mathrm{CH}-\stackrel{\bullet}{\mathrm{N}} \mathrm{H}_{2}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{SO}_{4}{ }^{2-}$ etc

Hexadentate : Six co-ordination sites
give example of Edta with structure
(2) Coloured ions : (i) coloured property (ii) colourless property (according to text book)
(3) Werner's theory : Each two points 1 mark.
(according to text book)
(4) Nature of bonding : \rightarrow electron configuration
(i) Covalent bonding \rightarrow sharing of $3 \mathrm{e}^{-\mathrm{s}} \ldots \mathrm{NH}_{3}, \mathrm{PH}_{3}$
\rightarrow sharing of $5 \mathrm{e}^{-\mathrm{s}} \ldots \mathrm{PCl}_{5}, \mathrm{NH}_{4}^{+}$etc.
(ii) ionic bonding : $\quad \rightarrow$ ions in +5 state not possible \rightarrow ions in +3 state $\ldots \mathrm{Sb}^{3+}, \mathrm{Bi}^{3+}$ \rightarrow ions in -3 state $\ldots \mathrm{Li}_{3} \mathrm{~N}, \mathrm{Na}_{3} \mathrm{P}$
(Write acc. to text book)
*_*_*

